Geeks With Blogs

News


Dylan Smith ALM / Architecture / TFS

I’ve had a lot of discussions at the office lately about the drastically different sets of software engineering practices used on our various projects, if what we are doing is appropriate, and what factors should you be considering when determining what practices are most appropriate in a given context. I wanted to write up my thoughts in a little more detail on this subject, so here we go:

If you compare any two software projects (specifically comparing their codebases) you’ll often see very different levels of maturity in the software engineering practices employed. By software engineering practices, I’m specifically referring to the quality of the code and the amount of technical debt present in the project.

Things such as Test Driven Development, Domain Driven Design, Behavior Driven Development, proper adherence to the SOLID principles, etc. are all practices that you would expect at the mature end of the spectrum. At the other end of the spectrum would be the quick-and-dirty solutions that are done using something like an Access Database, Excel Spreadsheet, or maybe some quick “drag-and-drop coding”. For this blog post I’m going to refer to this as the Software Engineering Maturity Spectrum (SEMS).

clip_image002[4]

I believe there is a time and a place for projects at every part of that SEMS. The risks and costs associated with under-engineering solutions have been written about a million times over so I won’t bother going into them again here, but there are also (unnecessary) costs with over-engineering a solution. Sometimes putting multiple layers, and IoC containers, and abstracting out the persistence, etc is complete overkill if a one-time use Access database could solve the problem perfectly well.

A lot of software developers I talk to seem to automatically jump to the very right-hand side of this SEMS in everything they do. A common rationalization I hear is that it may seem like a small trivial application today, but these things always grow and stick around for many years, then you’re stuck maintaining a big ball of mud. I think this is a cop-out. Sure you can’t always anticipate how an application will be used or grow over its lifetime (can you ever??), but that doesn’t mean you can’t manage it and evolve the underlying software architecture as necessary (even if that means having to toss the code out and re-write it at some point…maybe even multiple times).

My thoughts are that we should be making a conscious decision around the start of each project approximately where on the SEMS we want the project to exist. I believe this decision should be based on 3 factors:

1. Importance - How important to the business is this application? What is the impact if the application were to suddenly stop working?

2. Complexity - How complex is the application functionality?

3. Life-Expectancy - How long is this application expected to be in use? Is this a one-time use application, does it fill a short-term need, or is it more strategic and is expected to be in-use for many years to come?

Of course this isn’t an exact science. You can’t say that Project X should be at the 73% mark on the SEMS and expect that to be helpful. My point is not that you need to precisely figure out what point on the SEMS the project should be at then translate that into some prescriptive set of practices and techniques you should be using. Rather my point is that we need to be aware that there is a spectrum, and that not everything is going to be (or should be) at the edges of that spectrum, indeed a large number of projects should probably fall somewhere within the middle; and different projects should adopt a different level of software engineering practices and maturity levels based on the needs of that project.

To give an example of this way of thinking from my day job:

Every couple of years my company plans and hosts a large event where ~400 of our customers all fly in to one location for a multi-day event with various activities. We have some staff whose job it is to organize the logistics of this event, which includes tracking which flights everybody is booked on, arranging for transportation to/from airports, arranging for hotel rooms, name tags, etc The last time we arranged this event all these various pieces of data were tracked in separate spreadsheets and reconciliation and cross-referencing of all the data was literally done by hand using printed copies of the spreadsheets and several people sitting around a table going down each list row by row. Obviously there is some room for improvement in how we are using software to manage the event’s logistics.

The next time this event occurs we plan to provide the event planning staff with a more intelligent tool (either an Excel spreadsheet or probably an Access database) that can track all the information in one location and make sure that the various pieces of data are properly linked together (so for example if a person cancels you only need to delete them from one place, and not a dozen separate lists). This solution would fall at or near the very left end of the SEMS meaning that we will just quickly create something with very little attention paid to using mature software engineering practices. If we examine this project against the 3 criteria I listed above for determining it’s place within the SEMS we can see why:

  • Importance – If this application were to stop working the business doesn’t grind to a halt, revenue doesn’t stop, and in fact our customers wouldn’t even notice since it isn’t a customer facing application. The impact would simply be more work for our event planning staff as they revert back to the previous way of doing things (assuming we don’t have any data loss).

  • Complexity – The use cases for this project are pretty straightforward. It simply needs to manage several lists of data, and link them together appropriately. Precisely the task that access (and/or Excel) can do with minimal custom development required.

  • Life-Expectancy – For this specific project we’re only planning to create something to be used for the one event (we only hold these events every 2 years). If it works well this may change (see below).

Let’s assume we hack something out quickly and it works great when we plan the next event. We may decide that we want to make some tweaks to the tool and adopt it for planning all future events of this nature. In that case we should examine where the current application is on the SEMS, and make a conscious decision whether something needs to be done to move it further to the right based on the new objectives and goals for this application. This may mean scrapping the access database and re-writing it as an actual web or windows application. In this case, the life-expectancy changed, but let’s assume the importance and complexity didn’t change all that much. We can still probably get away with not adopting a lot of the so-called “best practices”. For example, we can probably still use some of the RAD tooling available and might have an Autonomous View style design that connects directly to the database and binds to typed datasets (we might even choose to simply leave it as an access database and continue using it; this is a decision that needs to be made on a case-by-case basis).

At Anvil Digital we have aspirations to become a primarily product-based company. So let’s say we use this tool to plan a handful of events internally, and everybody loves it. Maybe a couple years down the road we decide we want to package the tool up and sell it as a product to some of our customers. In this case the project objectives/goals change quite drastically. Now the tool becomes a source of revenue, and the impact of it suddenly stopping working is significantly less acceptable. Also as we hold focus groups, and gather feedback from customers and potential customers there’s a pretty good chance the feature-set and complexity will have to grow considerably from when we were using it only internally for planning a small handful of events for one company.

In this fictional scenario I would expect the target on the SEMS to jump to the far right. Depending on how we implemented the previous release we may be able to refactor and evolve the existing codebase to introduce a more layered architecture, a robust set of automated tests, introduce a proper ORM and IoC container, etc. More likely in this example the jump along the SEMS would be so large we’d probably end up scrapping the current code and re-writing. Although, if it was a slow phased roll-out to only a handful of customers, where we collected feedback, made some tweaks, and then rolled out to a couple more customers, we may be able to slowly refactor and evolve the code over time rather than tossing it out and starting from scratch.

The key point I’m trying to get across is not that you should be throwing out your code and starting from scratch all the time. But rather that you should be aware of when and how the context and objectives around a project changes and periodically re-assess where the project currently falls on the SEMS and whether that needs to be adjusted based on changing needs.

Note: There is also the idea of “spectrum decay”. Since our industry is rapidly evolving, what we currently accept as mature software engineering practices (the right end of the SEMS) probably won’t be the same 3 years from now. If you have a project that you were to assess at somewhere around the 80% mark on the SEMS today, but don’t touch the code for 3 years and come back and re-assess its position, it will almost certainly have changed since the right end of the SEMS will have moved farther out (maybe the project is now only around 60% due to decay).

Developer Skills

Another important aspect to this whole discussion is around the skill sets of your architects and lead developers. When talking about the progression of a developers skills from junior->intermediate->senior->… they generally start by only being able to write code that belongs on the left side of the SEMS and as they gain more knowledge and skill they become capable of working at a higher and higher level along the SEMS. We all realize that the learning never stops, but eventually you’ll get to the point where you can comfortably develop at the right-end of the SEMS (the exact practices and techniques that translates to is constantly changing, but that’s not the point here).

A critical skill that I’d love to see more evidence of in our industry is the most senior guys not only being able to work at the right-end of the SEMS, but more importantly be able to consciously work at any point along the SEMS as project needs dictate. An even more valuable skill would be if you could make the conscious decision to move a projects code further right on the SEMS (based on changing needs) and do so in an incremental manner without having to start from scratch.

An exercise that I’m planning to go through with all of our projects here at Anvil in the near future is to map out where I believe each project currently falls within this SEMS, where I believe the project *should* be on the SEMS based on the business needs, and for those that don’t match up (i.e. most of them) come up with a plan to improve the situation.

Posted on Saturday, June 5, 2010 10:17 PM | Back to top


Comments on this post: Software Engineering Practices – How mature do you need to be?

# re: Software Engineering Practices – How mature do you need to be?
Requesting Gravatar...
plg sir after day to day give me knoweldge for software eng. and other knowledge
Left by sunita on Jan 30, 2012 3:25 AM

Your comment:
 (will show your gravatar)


Copyright © Dylan Smith | Powered by: GeeksWithBlogs.net